Growth of polynomials with prescribed zeros - II

K. K. Dewan ${ }^{1}$ and Arty Ahuja ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
${ }^{2}$ GGSSS, VV-II, Delhi-92, under Directorate of Education, GNCT of Delhi, India
E-mail: aarty_ahuja@yahoo.com

1 Introduction and Statement of Results

For an arbitrary entire function $f(z)$, let $M(f, r)=\max _{|z|=r}|f(z)|$. As a consequence of maximum modulus principle [5, Vol. I, p. 137, Problem III, 269]) it is known that if $p(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
M(p, R) \leq R^{n} M(p, 1) \quad \text { for } \quad R \geq 1 \tag{1.1}
\end{equation*}
$$

The result is best possible and equality holds for polynomials having zeros at the origin.
Ankeny and Rivlin [1] considered polynomials not vanishing in the interior of the unit circle and obtained refinement of inequality (1.1) by proving that if $p(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
M(p, R) \leq\left(\frac{R^{n}+1}{2}\right) M(p, 1), \quad R \geq 1 \tag{1.2}
\end{equation*}
$$

The result is sharp and equality in (1.2) holds for $p(z)=\alpha+\beta z^{n}$, where $|\alpha|=|\beta|$.
While trying to obtain inequality analogous to (1.2) for polynomials not vanishing in $|z|<k$, $k \leq 1$, recently the authors [2] proved the following result.
Theorem A. If $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\begin{equation*}
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-1}(1+k)+\left(R^{n s}-1\right)}{k^{n-1}+k^{n}}\right)\{M(p, 1)\}^{s}, \quad R \geq 1 \tag{1.3}
\end{equation*}
$$

By involving the coefficients of $p(z)$, Dewan and Ahuja [2] in the same paper obtained the following refinement of Theorem A.

Theorem B. If $p(z)=\sum_{j=0}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\begin{equation*}
\{M(p, R)\}^{s} \leq \frac{1}{k^{n}}\left(\frac{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{2}\right)+k^{2}\left(R^{n s}-1\right)\right\}+\left|c_{n-1}\right|\left\{2 k^{n}+R^{n s}-1\right\}}{2\left|c_{n-1}\right|+n\left|c_{n}\right|\left(1+k^{2}\right)}\right)\{M(p, 1)\}^{s}, R \geq 1 \tag{1.4}
\end{equation*}
$$

In this paper, we consider a class of polynomials $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu \leq n$, having all its zeros on $|z|=k, k \leq 1$ and generalize Theorem A and Theorem B. More precisely, we prove Theorem 1. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\begin{equation*}
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s}, \quad R \geq 1 . \tag{1.5}
\end{equation*}
$$

Remark 1. If we choose $\mu=1$ in Theorem 1, then inequality (1.5) reduces to Theorem A.
For $s=1$ in Theorem 1 , we get the following result.
Corollary 1. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\begin{equation*}
M(p, R) \leq\left(\frac{k^{n-2 \mu+1}+k^{n}-\mu+1+R^{n}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right) M(p, 1), \quad R \geq 1 \tag{1.6}
\end{equation*}
$$

The following corollary immediately follows from inequality (1.6) by taking $k=1$.
Corollary 2. If $p(z)=\sum_{j}^{n} c_{j} z^{j}$ is a polynomial of degree n having all its zeros on $|z|=1$, then

$$
\begin{equation*}
M(p, R) \leq\left(\frac{R^{n}+1}{2}\right) M(p, 1), \quad R \geq 1 . \tag{1.7}
\end{equation*}
$$

If we involve the coefficients of $p(z)$ also, then we are able to obtain a bound which is better than the bound of Theorem 1. In fact, we prove

Theorem 2. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then for every positive integer s

$$
\{M(p, R)\}^{s} \leq \frac{1}{k^{n-\mu+1}}\left(\frac{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{\mu+1}\right)+k^{2 \mu}\left(R^{n s}-1\right)\right\}}{+\mu\left|c_{n-\mu}\right|\left\{k^{n-\mu+1}\left(1+k^{\mu-1}\right)+k^{\mu-1}\left(R^{n s}-1\right)\right\}} \begin{array}{|c|c|c|l|l|l}
\\
k^{\mu-\mu}\left|\left(1+k^{\mu-1}\right)+n\right| c_{n} \mid k^{\mu-1}\left(1+k^{\mu+1}\right) \tag{1.8}
\end{array}\right)\{M(p, 1)\}^{s}, R \geq 1
$$

To prove that the bound obtained in the above theorem is, in general, better than the bound obtained in Theorem 1, we show that

$$
\begin{aligned}
& \frac{1}{k^{n-\mu+1}} \frac{\binom{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{\mu+1}\right)+k^{2 \mu}\left(R^{n s}-1\right)\right\}}{+\mu\left|c_{n-\mu}\right|\left\{k^{n-\mu+1}\left(1+k^{\mu-1}\right)+k^{\mu-1}\left(R^{n s}-1\right)\right\}}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)} \\
& \quad \leq \frac{k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& n\left|c_{n}\right|\left(k^{n-2 \mu+1}+k^{n-\mu+1}\right)\left(k^{n}+k^{n+\mu+1}+k^{2 \mu} R^{n s}-k^{2 \mu}\right) \\
& \quad+\mu\left|c_{n-\mu}\right|\left(k^{n-2 \mu+1}+k^{n-\mu+1}\right)\left(k^{n}+k^{n-\mu+1}+k^{\mu-1} R^{n s}-k^{\mu-1}\right) \\
& \leq n\left|c_{n}\right|\left(k^{n}+k^{n+\mu+1}\right)\left(k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}-1\right) \\
& \quad+\mu\left|c_{n-\mu}\right|\left(k^{n}+k^{n-\mu+1}\right)\left(k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}-1\right)
\end{aligned}
$$

which implies

$$
\begin{aligned}
& n\left|c_{n}\right|\left(k^{2 n-2 \mu+1}+k^{2 n-\mu+2}+k^{n+1} R^{n s}-k^{n+1}+k^{2 n-\mu+1}+k^{2 n+2}+k^{n+\mu+1} R^{n s}-k^{n+\mu+1}\right) \\
& +\mu\left|c_{n-\mu}\right|\left(k^{2 n-2 \mu+1}+k^{2 n-3 \mu+2}+k^{n-\mu} R^{n s}-k^{n-\mu}+k^{2 n-\mu+1}+k^{2 n-2 \mu+2}+k^{n} R^{n s}-k^{n}\right) \\
& \quad \leq n\left|c_{n}\right|\left(k^{2 n-2 \mu+1}+k^{2 n-\mu+1}+k^{n} R^{n s}-k^{n}+k^{2 n-\mu+2}+k^{2 n+2}+k^{n+\mu+1} R^{n s}-k^{n+\mu+1}\right) \\
& \quad+\mu\left|c_{n-\mu}\right|\left(k^{2 n-2 \mu+2}+k^{2 n-3 \mu+2}+k^{n-\mu+1} R^{n s}-k^{n-\mu+1}+k^{2 n-2 \mu+1}+k^{2 n-\mu+1}+k^{n} R^{n s}-k^{n}\right), \\
& \mu\left|c_{n-\mu}\right|\left\{k^{n-\mu}\left(R^{n s}-1\right)-k^{n-\mu+1}\left(R^{n s}-1\right)\right\} \leq n\left|c_{n}\right|\left\{k^{n}\left(R^{n s}-1\right)-k^{n+1}\left(R^{n s}-1\right)\right\}, \\
& \mu\left|c_{n-\mu}\right| k^{n-\mu} \leq n\left|c_{n}\right| k^{n}, \\
& \frac{\mu\left|c_{n-\mu}\right|}{n\left|c_{n}\right|} \leq k^{\mu},
\end{aligned}
$$

which is always true (see Lemma 4)
If we choose $s=1$ in Theorem 2, we get the following result.
Corollary 3. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$

$$
M(p, R) \leq \frac{1}{k^{n-\mu+1}}\left(\left.\frac{n\left|c_{n}\right|\left\{k^{n}\left(1+k^{\mu+1}\right)+k^{2 \mu}\left(R^{n}-1\right)\right\}}{+\mu\left|c_{n-\mu}\right|\left\{k^{n-\mu+1}\left(1+k^{\mu-1}\right)+k^{\mu-1}\left(R^{n}-1\right)\right\}} \cos _{n-\mu}\left|\left(1+k^{\mu-1}\right)+n\right| c_{n} \right\rvert\, k^{\mu-1}\left(1+k^{\mu+1}\right) \quad\right) M(p, 1), R \geq 1 .
$$

Remark 2. (i) If we choose $\mu=1$ in Theorem 2,then inequality (1.8) reduces to Theorem B.
(ii) For $k=1$ in inequality (1.9), we get Corollary 2.

2 Lemmas

We need the following lemmas for the proof of these theorems. The first lemma is due to Dewan and Hans [3].

Lemma 1. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-2 \mu+1}+k^{n-\mu+1}} \max _{|z|=1}|p(z)| . \tag{2.1}
\end{equation*}
$$

Lemma 2. If $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu<n$, is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-\mu+1}} \frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)+n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)} \max _{|z|=1}|p(z)| . \tag{2.2}
\end{equation*}
$$

The above lemma is due to Dewan and Hans [4].
Lemma 3. Let $p(z)=c_{0}+\sum_{v=\mu}^{n} c_{v} z^{v}, 1 \leq \mu \leq n$, be a polynomial of degree n having no zero in the disk $|z|<k, k \geq 1$,

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{c_{\mu}}{c_{0}}\right| k^{\mu} \leq 1 \tag{2.3}
\end{equation*}
$$

The above lemma was given by Qazi [6, Remark 1].
Lemma 4. Let $p(z)=c_{n} z^{n}+\sum_{j=\mu}^{n} c_{n-j} z^{n-j}, 1 \leq \mu \leq n$, be a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$,

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{c_{n-\mu}}{c_{n}}\right| \leq k^{\mu} \tag{2.4}
\end{equation*}
$$

Proof of Lemma 4. If $p(z)$ has all its zeros on $|z|=k, k \leq 1$, then $q(z)=z^{n} p\left(\frac{1}{\bar{z}}\right)$, has all its zeros on $|z|=\frac{1}{k}, \frac{1}{k} \geq 1$. Now applying Lemma 3 to the polynomial $q(z)$, Lemma 4 follows.

3 Proof of the theorems

Proof of Theorem 1. Let $M(p, 1)=\max _{|z|=1}|p(z)|$. Since $p(z)$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, therefore by Lemma 1 , we have

$$
\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-2 \mu+1}+k^{n-\mu+1}} M(p, 1) \quad \text { for } \quad|z|=1 .
$$

Now $p^{\prime}(z)$ is a polynomial of degree $n-1$, therefore, it follows by (1.1) that for all $r \geq 1$ and $0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|p^{\prime}\left(r e^{i \theta}\right)\right| \leq \frac{n r^{n-1}}{k^{n-2 \mu+1}+k^{n-\mu+1}} M(p, 1) \tag{3.1}
\end{equation*}
$$

Also for each $\theta, 0 \leq \theta<2 \pi$ and $R \geq 1$, we obtain

$$
\begin{aligned}
\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s} & =\int_{1}^{R} \frac{d}{d t}\left\{p\left(t e^{i \theta}\right)\right\}^{s} d t \\
& =\int_{1}^{R} s\left\{p\left(t e^{i \theta}\right)\right\}^{s-1} p^{\prime}\left(t e^{i \theta}\right) e^{i \theta} d t
\end{aligned}
$$

This implies

$$
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p\left(t e^{i \theta}\right)\right|^{s-1}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which on combining with inequalities (3.1) and (1.1), we get

$$
\begin{aligned}
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| & \leq \frac{n s}{k^{n-2 \mu+1}+k^{n-\mu+1}}\{M(p, 1)\}^{s} \int_{1}^{R} t^{n s-1} d t \\
& =\left(\frac{R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\left|p\left(R e^{i \theta}\right)\right|^{s} \leq & \left|p\left(e^{i \theta}\right)\right|^{s}+\left(\frac{R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s} \\
& \leq\{M(p, 1)\}^{s}+\left(\frac{R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s} \tag{3.2}
\end{align*}
$$

Hence, from (3.2), we conclude that

$$
\{M(p, R)\}^{s} \leq\left(\frac{k^{n-2 \mu+1}+k^{n-\mu+1}+R^{n s}-1}{k^{n-2 \mu+1}+k^{n-\mu+1}}\right)\{M(p, 1)\}^{s} .
$$

This completes the proof of Theorem 1.
Proof of Theorem 2. The proof of Theorem 2 follows on the same lines as that of Theorem 1 by using Lemma 2 instead of Lemma 1. But for the sake of completeness we give a brief outline of the proof. Since $p(z)$ is a polynomial of degree n having all its zeros on $|z|=k, k \leq 1$, therefore, by Lemma 2, we have

$$
\left|p^{\prime}(z)\right| \leq \frac{n}{k^{n-\mu+1}}\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)+\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)}\right) M(p, 1) \quad \text { for } \quad|z|=1
$$

Now $p^{\prime}(z)$ is a polynomial of degree $n-1$, therefore, it follows by (1.1) that for all $r \geq 1$ and $0 \leq \theta<2 \pi$

$$
\begin{equation*}
\left|p^{\prime}\left(r e^{i \theta}\right)\right| \leq \frac{n r^{n-1}}{k^{n-\mu+1}}\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)+\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)}\right) M(p, 1) \tag{3.3}
\end{equation*}
$$

Also for each $\theta, 0 \leq \theta<2 \pi$ and $R \geq 1$, we have

$$
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p\left(t e^{i \theta}\right)\right|^{s-1}\left|p^{\prime}\left(t e^{i \theta}\right)\right| d t
$$

which on combining with inequalities (1.1) and (3.3), we get

$$
\begin{aligned}
& \left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \\
& \quad \leq\left(\frac{R^{n s}-1}{k^{n-\mu+1}}\right)\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)+\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)}\right)\{M(p, 1)\}^{s},
\end{aligned}
$$

which implies

$$
\begin{aligned}
\left|p\left(R e^{i \theta}\right)\right|^{s} \leq & \{M(p, 1)\}^{s}+\left(\frac{R^{n s}-1}{k^{n-\mu+1}}\right) \\
& \times\left(\frac{n\left|c_{n}\right| k^{2 \mu}+\mu\left|c_{n-\mu}\right| k^{\mu-1}}{n\left|c_{n}\right| k^{\mu-1}\left(1+k^{\mu+1}\right)+\mu\left|c_{n-\mu}\right|\left(1+k^{\mu-1}\right)}\right)\{M(p, 1)\}^{s}
\end{aligned}
$$

from which the proof of Theorem 2 follows.

References

[1] N. C. Ankeny and T.J. Rivlin, On a Theorem of S. Bernstein, Pacific J. Math., 5(1955), 849-852.
[2] K.K. Dewan and Arty Ahuja, Growth of polynomials with prescribed zeros, J. Math. Inequalities, to appear.
[3] K.K.Dewan and Sunil Hans, On extremal properties for the derivative of polynomials, Mathematica Balkanica, 23 (2009), Fasc. 1-2, 27-36.
[4] K.K.Dewan and Sunil Hans, On maximum modulus for the derivative of a polynomial, Annales Univ. Mariae Curie-Sklodowska Lublin, LXIII (2009), 55-62.
[5] G. Pólya and G. Szegö, Aufgaben and Lehrsatze aus der Analysis, Springer-Verlag, Berlin, 1925.
[6] M.A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc., 115(1992), 337-343.

